Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Biol Evol ; 39(11)2022 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-36317199

RESUMO

Traits shared among distantly related lineages are indicators of common evolutionary constraints, at the ecological, physiological, or molecular level. Here, we show that the vertebral stripe, a cryptic color pattern, has evolved hundreds of times in the evolutionary history of anurans (frogs and toads) and is favored in terrestrial habitats. Using a genome-wide association study, we demonstrate that variation near the Agouti signaling protein gene (ASIP) is responsible for the different vertebral stripe phenotypes in the African grass frog Ptychadena robeensis. RNAseq and real-time quantitative PCR revealed that differential expression of the gene and an adjacent long non-coding RNA is linked to patterning in this species. Surprisingly, and although the stripe phenotypes are shared with closely related species, we found that the P. robeensis alleles are private to the species and unlikely to evolve under long-term balancing selection, thus indicating that the vertebral stripe phenotypes result from parallel evolution within the group. Our findings demonstrate that this cryptic color pattern evolved rapidly and recurrently in terrestrial anurans, and therefore constitutes an ideal system to study repeated evolution.


Assuntos
Anuros , Estudo de Associação Genômica Ampla , Animais , Anuros/genética , Fenótipo , Alelos , Genômica
2.
Genome Biol Evol ; 2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35700227

RESUMO

Falcons are diverse birds of cultural and economic importance. They have undergone major lineage-specific chromosomal rearrangements, resulting in greatly-reduced chromosome counts relative to other birds. Here, we use 10X Genomics linked reads to provide new high-contiguity genomes for two gyrfalcons, a saker falcon, a lanner falcon, three subspecies of peregrine falcons, and the common kestrel. Assisted by a transcriptome sequenced from 22 gyrfalcon tissues, we annotate these genomes for a variety of genomic features, estimate historical demography, and then investigate genomic equilibrium in the context of falcon-specific chromosomal rearrangements. We find that falcon genomes are not in AT-GC equilibrium with a bias in substitutions towards higher AT content; this bias is predominantly but not exclusively driven by hypermutability of CpG sites. Small indels and large structural variants were also biased towards insertions rather than deletions. Patterns of disequilibrium were linked to chromosomal rearrangements: falcons have lost GC content in regions that have fused to larger chromosomes from microchromosomes and gained GC content in regions of macrochromosomes that have translocated to microchromosomes. Inserted bases have accumulated on regions ancestrally belonging to microchromosomes, consistent with insertion-biased gene conversion. We also find an excess of interspersed repeats on regions of microchromosomes that have fused to macrochromosomes. Our results reveal that falcon genomes are in a state of flux. They further suggest that many of the key differences between microchromosomes and macrochromosomes are driven by differences in chromosome size, and indicate a clear role for recombination and biased-gene-conversion in determining genomic equilibrium.

3.
Int J Mol Sci ; 23(9)2022 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-35563146

RESUMO

Transposable elements exhibit a base composition that is often different from the genomic average and from hosts' genes. The most common compositional bias is towards Adenosine and Thymine, although this bias is not universal, and elements with drastically different base composition can coexist within the same genome. The AT-richness of transposable elements is apparently maladaptive because it results in poor transcription and sub-optimal translation of proteins encoded by the elements. The cause(s) of this unusual base composition remain unclear and have yet to be investigated. Here, I review what is known about the nucleotide content of transposable elements and how this content can affect the genome of their host as well as their own replication. The compositional bias of transposable elements could result from several non-exclusive processes including horizontal transfer, mutational bias, and selection. It appears that mutation alone cannot explain the high AT-content of transposons and that selection plays a major role in the evolution of the compositional bias. The reason why selection would favor a maladaptive nucleotide content remains however unexplained and is an area of investigation that clearly deserves attention.


Assuntos
Elementos de DNA Transponíveis , Nucleotídeos , Composição de Bases , Códon , Elementos de DNA Transponíveis/genética , Mutação
4.
Mol Ecol ; 31(9): 2664-2678, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35239243

RESUMO

Taxon-specific characteristics and extrinsic climatic and geological forces may both shape population differentiation and speciation. In geographically and taxonomically focused investigations, differentiation may occur synchronously as species respond to the same external conditions. Conversely, when evolution is investigated in taxa with largely varying traits, population differentiation and speciation is complex and shaped by interactions of Earth's template and species-specific traits. As such, it is important to characterize evolutionary histories broadly across the tree of life, especially in geographic regions that are exceptionally diverse and under pressures from human activities such as in biodiversity hotspots. Here, using whole-genome sequencing data, we characterize genomic variation in populations of six Ethiopian Highlands forest bird species separated by a lowland biogeographic barrier, the Great Rift Valley (GRV). In all six species, populations on either side of the GRV exhibited significant but varying levels of genetic differentiation. Species' dispersal ability was negatively correlated with levels of population differentiation. Isolation with migration models indicated varied patterns of population differentiation and connectivity among populations of the focal species. We found that demographic histories-estimated for each individual-varied by both species and population but were consistent between individuals of the same species and sampling region. We found that genomic diversity varied by half an order of magnitude across species, and that this variation could largely be explained by the harmonic mean of effective population size over the past 200,000 years. Overall, we found that even in highly dispersive species like birds, the GRV acts as a substantial biogeographic barrier.


Assuntos
Passeriformes , Animais , Demografia , Etiópia , Florestas , Humanos , Passeriformes/genética , Filogenia
5.
Zookeys ; 1128: 63-97, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36762238

RESUMO

Frogs of the genus Leptopelis have diversified in the Ethiopian Highlands to occupy forests and montane grasslands both east and west of the Great Rift Valley. Genetic studies revealed that the endemic species Leptopelisgramineus (Boulenger, 1898) comprises multiple unnamed taxa. A careful examination of historical type specimens is, however, needed to fully resolve the taxonomy of the group. Here we use mitochondrial DNA and morphological analyses on a large sample of recently-collected Ethiopian Leptopelis, as well as century-old type specimens to demonstrate that the recently resurrected L.montanus Tiutenko & Zinenko, 2021 (previously Pseudocassinaocellata Ahl, 1924) is a junior synonym of L.rugosus (Ahl, 1924) and corresponds to the taxon found west of the Great Rift Valley, not east as previously thought. Our results show that populations inhabiting the mountains and plateaus east of the Rift constitute a distinct and undescribed species. We provide a re-description of L.rugosus and describe two new species inhabiting the Highlands east of the Great Rift Valley. We provide an identification key, as well as a description of the calls of the members of the Leptopelisgramineus species complex.

6.
Zookeys ; 1070: 135-149, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34819775

RESUMO

The taxonomy of the Ptychadenaneumanni species complex, a radiation of grass frogs inhabiting the Ethiopian highlands, has puzzled scientists for decades because of the morphological resemblance among its members. Whilst molecular phylogenetic methods allowed the discovery of several species in recent years, assigning pre-existing and new names to clades was challenged by the unavailability of molecular data for century-old type specimens. We used Illumina short reads to sequence the mitochondrial DNA of type specimens in this group, as well as ddRAD-seq analyses to resolve taxonomic uncertainties surrounding the P.neumanni species complex. The phylogenetic reconstruction revealed recurrent confusion between Ptychadenaerlangeri (Ahl, 1924) and P.neumanni (Ahl, 1924) in the literature. The phylogeny also established that P.largeni Perret, 1994 represents a junior synonym of P.erlangeri (Ahl, 1924) and distinguished between two small species, P.nana Perret, 1994, restricted to the Arussi Plateau, and P.robeensis Goutte, Reyes-Velasco, Freilich, Kassie & Boissinot, 2021, which inhabits the Bale Mountains. The phylogenetic analyses of mitochondrial DNA from type specimens also corroborate the validity of seven recently described species within the group. Our study shows how modern molecular tools applied to historical type specimens can help resolve long-standing taxonomic issues in cryptic species complexes.

7.
Genes (Basel) ; 12(6)2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34203645

RESUMO

Transposable elements (TEs) are nearly ubiquitous in eukaryotes. The increase in genomic data, as well as progress in genome annotation and molecular biology techniques, have revealed the vast number of ways mobile elements have impacted the evolution of eukaryotes. In addition to being the main cause of difference in haploid genome size, TEs have affected the overall organization of genomes by accumulating preferentially in some genomic regions, by causing structural rearrangements or by modifying the recombination rate. Although the vast majority of insertions is neutral or deleterious, TEs have been an important source of evolutionary novelties and have played a determinant role in the evolution of fundamental biological processes. TEs have been recruited in the regulation of host genes and are implicated in the evolution of regulatory networks. They have also served as a source of protein-coding sequences or even entire genes. The impact of TEs on eukaryotic evolution is only now being fully appreciated and the role they may play in a number of biological processes, such as speciation and adaptation, remains to be deciphered.


Assuntos
Elementos de DNA Transponíveis , Evolução Molecular , Animais , Humanos , Plantas/genética
8.
Sci Rep ; 11(1): 4858, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33649347

RESUMO

Climate has a large impact on diversity and evolution of the world's biota. The Eocene-Oligocene transition from tropical climate to cooler, drier environments was accompanied by global species turnover. A large number of Old World lacertid lizard lineages have diversified after the Eocene-Oligocene boundary. One of the most speciose reptile genera in the arid Palearctic, Acanthodactylus, contains two sub-Saharan species with unresolved phylogenetic relationship and unknown climatic preferences. We here aim to understand how and when adaptation to arid conditions occurred in Acanthodactylus and when tropical habitats where entered. Using whole mitogenomes from fresh and archival DNA and published sequences we recovered a well-supported Acanthodactylus phylogeny and underpinned the timing of diversification with environmental niche analyses of the sub-Saharan species A. guineensis and A. boueti in comparison to all arid Acanthodactylus. We found that A. guineensis represents an old lineage that splits from a basal node in the Western clade, and A. boueti is a derived lineage and probably not its sister. Their long branches characterize them-and especially A. guineensis-as lineages that may have persisted for a long time without further diversification or have undergone multiple extinctions. Environmental niche models verified the occurrence of A. guineensis and A. boueti in hot humid environments different from the other 42 arid Acanthodactylus species. While A. guineensis probably remained in tropical habitat from periods prior to the Eocene-Oligocene boundary, A. boueti entered tropical environments independently at a later period. Our results provide an important baseline for studying adaptation and the transition from humid to arid environments in Lacertidae.


Assuntos
Evolução Biológica , Genoma Mitocondrial , Lagartos/genética , Filogenia , Animais , Lagartos/classificação , Filogeografia , Clima Tropical
9.
Zookeys ; 1016: 77-141, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33628080

RESUMO

Frogs of the genus Ptychadena that inhabit the Ethiopian highlands serve as a model system to understand biogeography, diversification, and adaptations to high elevations. Despite recent studies focusing on the systematics of this group, the taxonomy of the Ptychadena neumanni species complex remains only partially resolved, owing largely to the morphological resemblance of its members. Here, the taxonomy of this historically problematic group of frogs is revised by integrating morphological and molecular analyses on both century-old type specimens and more recently collected material. Based on these multiple lines of evidence, the P. neumanni species complex is shown to be more speciose than previously thought and four new species are described. With the aim of clarifying and stabilizing the taxonomy of the group, six species are also re-described and morphological and acoustic identification keys are provided. This study also establishes species distribution maps and reveals important differences in range size between the members of the P. neumanni complex, calling for adapted conservation measures across the Ethiopian highlands.

10.
PLoS Genet ; 16(10): e1009082, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33017388

RESUMO

The interactions between transposable elements (TEs) and their hosts constitute one of the most profound co-evolutionary processes found in nature. The population dynamics of TEs depends on factors specific to each TE families, such as the rate of transposition and insertional preference, the demographic history of the host and the genomic landscape. How these factors interact has yet to be investigated holistically. Here we are addressing this question in the green anole (Anolis carolinensis) whose genome contains an extraordinary diversity of TEs (including non-LTR retrotransposons, SINEs, LTR-retrotransposons and DNA transposons). We observed a positive correlation between recombination rate and frequency of TEs and densities for LINEs, SINEs and DNA transposons. For these elements, there was a clear impact of demography on TE frequency and abundance, with a loss of polymorphic elements and skewed frequency spectra in recently expanded populations. On the other hand, some LTR-retrotransposons displayed patterns consistent with a very recent phase of intense amplification. To determine how demography, genomic features and intrinsic properties of TEs interact we ran simulations using SLiM3. We determined that i) short TE insertions are not strongly counter-selected, but long ones are, ii) neutral demographic processes, linked selection and preferential insertion may explain positive correlations between average TE frequency and recombination, iii) TE insertions are unlikely to have been massively recruited in recent adaptation. We demonstrate that deterministic and stochastic processes have different effects on categories of TEs and that a combination of empirical analyses and simulations can disentangle these mechanisms.


Assuntos
Elementos de DNA Transponíveis/genética , Evolução Molecular , Retroelementos/genética , Seleção Genética/genética , Animais , Genoma/genética , Genômica , Mutagênese Insercional , Sequências Repetidas Terminais/genética , Vertebrados/genética
11.
Mob DNA ; 11: 14, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32280379

RESUMO

BACKGROUND: Non-LTR retrotransposons often exhibit base composition that is markedly different from the nucleotide content of their host's gene. For instance, the mammalian L1 element is AT-rich with a strong A bias on the positive strand, which results in a reduced transcription. It is plausible that the A-richness of mammalian L1 is a self-regulatory mechanism reflecting a trade-off between transposition efficiency and the deleterious effect of L1 on its host. We examined if the A-richness of L1 is a general feature of non-LTR retrotransposons or if different clades of elements have evolved different nucleotide content. We also investigated if elements belonging to the same clade evolved towards different base composition in different genomes or if elements from different clades evolved towards similar base composition in the same genome. RESULTS: We found that non-LTR retrotransposons differ in base composition among clades within the same host but also that elements belonging to the same clade differ in base composition among hosts. We showed that nucleotide content remains constant within the same host over extended period of evolutionary time, despite mutational patterns that should drive nucleotide content away from the observed base composition. CONCLUSIONS: Our results suggest that base composition is evolving under selection and may be reflective of the long-term co-evolution between non-LTR retrotransposons and their host. Finally, the coexistence of elements with drastically different base composition suggests that these elements may be using different strategies to persist and multiply in the genome of their host.

12.
Mol Phylogenet Evol ; 147: 106770, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32084510

RESUMO

New world coralsnakes of the genus Micrurus are a diverse radiation of highly venomous and brightly colored snakes that range from North Carolina to Argentina. Species in this group have played central roles in developing and testing hypotheses about the evolution of mimicry and aposematism. Despite their diversity and prominence as model systems, surprisingly little is known about species boundaries and phylogenetic relationships within Micrurus, which has substantially hindered meaningful analyses of their evolutionary history. Here we use mitochondrial genes together with thousands of nuclear genomic loci obtained via ddRADseq to study the phylogenetic relationships and population genomics of a subclade of the genus Micrurus: The M. diastema species complex. Our results indicate that prior species and species-group inferences based on morphology and color pattern have grossly misguided taxonomy, and that the M. diastema complex is not monophyletic. Based on our analyses of molecular data, we infer the phylogenetic relationships among species and populations, and provide a revised taxonomy for the group. Two non-sister species-complexes with similar color patterns are recognized, the M. distans and the M. diastema complexes, the first being basal to the monadal Micrurus and the second encompassing most North American monadal taxa. We examined all 13 species, and their respective subspecies, for a total of 24 recognized taxa in the M. diastema species complex. Our analyses suggest a reduction to 10 species, with no subspecific designations warranted, to be a more likely estimate of species diversity, namely, M. apiatus, M. browni, M. diastema, M. distans, M. ephippifer, M. fulvius, M. michoacanensis, M. oliveri, M. tener, and one undescribed species.


Assuntos
Biodiversidade , Cobras Corais/genética , Genoma , Filogenia , Polimorfismo de Nucleotídeo Único/genética , Animais , Argentina , Teorema de Bayes , Núcleo Celular/genética , DNA Mitocondrial/genética , Variação Genética , Genética Populacional , Geografia , Funções Verossimilhança , Nucleotídeos/genética , Pigmentação/genética , Análise de Componente Principal , Especificidade da Espécie
14.
Mol Ecol ; 28(15): 3523-3543, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31233650

RESUMO

What makes a species able to colonize novel environments? This question is key to understand the dynamics of adaptive radiations and ecological niche shifts, but the mechanisms that underlie expansion into novel habitats remain poorly understood at a genomic scale. Lizards from the genus Anolis are typically tropical, and the green anole (Anolis carolinensis) constitutes an exception since it expanded into temperate North America from subtropical Florida. Thus, we used the green anole as a model to investigate signatures of selection associated with colonization of a new environment, namely temperate North America. To this end, we analysed 29 whole-genome sequences, covering the entire native range of the species. We used a combination of recent methods to quantify both positive and balancing selection in northern populations, including FST outlier methods, machine learning and ancestral recombination graphs. We naively scanned for genes of interest and assessed the overlap between multiple tests. Strikingly, we identified many genes involved in behaviour, suggesting that the recent successful colonization of northern environments may have been linked to behavioural shifts as well as physiological adaptation. Using a candidate genes strategy, we determined that genes involved in response to cold or behaviour displayed more frequently signals of selection, while controlling for local recombination rate, gene clustering and gene length. In addition, we found signatures of balancing selection at immune genes in all investigated genetic groups, but also at genes involved in neuronal and anatomical development.


Assuntos
Comportamento Animal/fisiologia , Genes Controladores do Desenvolvimento , Lagartos/genética , Lagartos/metabolismo , Seleção Genética , Clima Tropical , Algoritmos , Animais , Ontologia Genética , Genética Populacional , Humanos , Polimorfismo de Nucleotídeo Único/genética , Recombinação Genética/genética , Fatores de Tempo
15.
Genes (Basel) ; 10(6)2019 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-31151307

RESUMO

Transposable elements (TEs) play an important role in shaping genomic organization and structure, and may cause dramatic changes in phenotypes. Despite the genetic load they may impose on their host and their importance in microevolutionary processes such as adaptation and speciation, the number of population genetics studies focused on TEs has been rather limited so far compared to single nucleotide polymorphisms (SNPs). Here, we review the current knowledge about the dynamics of transposable elements at recent evolutionary time scales, and discuss the mechanisms that condition their abundance and frequency. We first discuss non-adaptive mechanisms such as purifying selection and the variable rates of transposition and elimination, and then focus on positive and balancing selection, to finally conclude on the potential role of TEs in causing genomic incompatibilities and eventually speciation. We also suggest possible ways to better model TEs dynamics in a population genomics context by incorporating recent advances in TEs into the rich information provided by SNPs about the demography, selection, and intrinsic properties of genomes.


Assuntos
Elementos de DNA Transponíveis/genética , Evolução Molecular , Metagenômica , Seleção Genética , Genética Populacional , Humanos , Polimorfismo de Nucleotídeo Único/genética , Dinâmica Populacional
16.
Genome Biol Evol ; 11(7): 2009-2022, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31134281

RESUMO

Gaining a better understanding on how selection and neutral processes affect genomic diversity is essential to gain better insights into the mechanisms driving adaptation and speciation. However, the evolutionary processes affecting variation at a genomic scale have not been investigated in most vertebrate lineages. Here, we present the first population genomics survey using whole genome resequencing in the green anole (Anolis carolinensis). Anoles have been intensively studied to understand mechanisms underlying adaptation and speciation. The green anole in particular is an important model to study genome evolution. We quantified how demography, recombination, and selection have led to the current genetic diversity of the green anole by using whole-genome resequencing of five genetic clusters covering the entire species range. The differentiation of green anole's populations is consistent with a northward expansion from South Florida followed by genetic isolation and subsequent gene flow among adjacent genetic clusters. Dispersal out-of-Florida was accompanied by a drastic population bottleneck followed by a rapid population expansion. This event was accompanied by male-biased dispersal and/or selective sweeps on the X chromosome. We show that the interaction between linked selection and recombination is the main contributor to the genomic landscape of differentiation in the anole genome.


Assuntos
Evolução Molecular , Genômica/métodos , Animais , Fluxo Gênico/genética , Variação Genética/genética , Genoma/genética , Lagartos , Filogenia , Recombinação Genética , Seleção Genética/genética , Análise de Sequência de DNA
17.
Zookeys ; (824): 53-70, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30799972

RESUMO

A new species of Phrynobatrachus is described from the unexplored and isolated Bibita Mountain, southwestern Ethiopia, based on morphological characters and sequences of the mitochondrial rRNA16s. The new species can be distinguished from all its congeners by a small size (SVL = 16.8 ± 0.1 mm for males, 20.3 ± 0.9 mm for females), a slender body with long legs and elongated fingers and toes, a golden coloration, a completely hidden tympanum, and a marked canthus rostralis. The phylogenetic hypothesis based on 16s sequences places the new species as sister to the species group that includes P.natalensis, although it is morphologically more similar to other dwarf Phrynobatrachus species, such as the Ethiopian P.minutus.

18.
Cytogenet Genome Res ; 157(1-2): 21-33, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30739120

RESUMO

Transposable elements (TE) constitute one of the most variable genomic features among vertebrates, impacting genome size, structure, and composition. Despite their important role in shaping genomic diversity, they have mostly been studied in mammals, which display one of the least diverse genomes in terms of TE diversity. Recent new resources in reptilian genomics have opened a broader perspective about TE evolution in amniotes. We discuss these recent results by showing that TE diversity is high in reptiles, particularly in squamates, with strong heterogeneity in the number of TE classes retained in each lineage, even at short evolutionary scales. More research is needed to uncover the exact mechanisms that regulate TE proliferation in reptiles and to what extent these selfish elements can play a role in local adaptation or in the emergence of barriers to gene flow.


Assuntos
Elementos de DNA Transponíveis/genética , Variação Genética , Genoma/genética , Répteis/genética , Animais , Evolução Molecular , Tamanho do Genoma , Genômica/métodos , Mamíferos/genética , Répteis/classificação
19.
Ecol Evol ; 9(24): 14523-14537, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31938538

RESUMO

Here, we review the diversity, evolutionary history, and genomics of falcons in the context of their conservation and interactions with humans, and provide a perspective on how new genomic approaches may be applied to expand our knowledge of these topics. For millennia, humans and falcons (genus Falco) have developed unique relationships through falconry, religious rituals, conservation efforts, and human lifestyle transitions. From an evolutionary perspective, falcons remain an enigma. Having experienced several recent radiations, they have reached an unparalleled and almost global distribution, with an intrageneric species richness that is roughly an order of magnitude higher than typical within their family (Falconidae) and across other birds (Phylum: Aves). This diversity has evolved in the context of unusual genomic architecture that includes unique chromosomal rearrangements, relatively low chromosome counts, extremely low microdeletion rates, and high levels of nuclear mitochondrial DNA segments (NUMTs). These genomic peculiarities combine with high levels of ecological and organismal diversity and a legacy of human interactions to make falcons obvious candidates for evolutionary studies, providing unique research opportunities in common topics, including chromosomal evolution, the mechanics of speciation, local adaptation, domestication, and urban adaptation.

20.
Cytogenet Genome Res ; 154(4): 217-228, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29991050

RESUMO

LINE-1 (L1) retrotransposons constitute the dominant category of transposons in mammalian genomes. L1 elements are active in the vast majority of mammals, and only a few cases of L1 extinction have been documented. The only possible case of extinction in primates was suggested for South American spider monkeys. However, these previous studies were based on a single species. We revisited this question with a larger phylogenetic sample, covering all 4 genera of Atelidae and 3 species of spider monkeys. We used an enrichment method to clone recently inserted L1 elements and performed an evolutionary analysis of the sequences. We were able to identify young L1 elements in all taxa, suggesting that L1 is probably still active in all Atelidae examined. However, we also detected considerable variations in the proportion of recent elements indicating that the rate of L1 amplification varies among Atelidae by a 3-fold factor. The extent of L1 amplification in Atelidae remains overall lower than in other New World monkeys. Multiple factors can affect the amplification of L1, such as the demography of the host and the control of transposition. These factors are discussed in the context of host life history.


Assuntos
Atelidae/classificação , Atelidae/genética , Evolução Molecular , Amplificação de Genes/genética , Elementos Nucleotídeos Longos e Dispersos/genética , Filogenia , Animais , Sequência Consenso/genética , Sequência Conservada/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...